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Abstract In their proof of Gilbert–Pollak conjecture on Steiner ratio, Du and Hwang
(Proceedings 31th FOCS, pp. 76–85 (1990); Algorithmica 7:121–135, 1992) used a result
about localization of the minimum points of functions of the type maxy∈Y f (·, y). In this
paper, we present a generalization of such a localization in terms of generalized vertices, when
we minimize over a compact polyhedron, and Y is a compact set. This is also a strengthening
of a result of Du and Pardalos (J. Global Optim. 5:127–129, 1994). We give also a random
version of our generalization.

Keywords Minimax · Gilbert–Pollak conjecture · Steiner ratio · g-Vertex · Steiner tree ·
Spanning tree

1 Introduction

We consider a classical minimax problem

min
x∈X

max
y∈Y

f (x, y), (1)

where X is an appropriate set and Y is a compact set. We are interested in determination of
a subset B ⊂ X (usually finite) such that

min
x∈B

max
y∈Y

f (x, y) = min
x∈X

max
y∈Y

f (x, y). (2)

P. G. Georgiev (B)
Computer Science Department, University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH 45221, USA
e-mail: pgeorgie@ececs.uc.edu

P. M. Pardalos · A. Chinchuluun
Department of Industrial and Systems Engineering, University of Florida,
303 Weil Hall, Gainesville, FL 32611, USA

P. M. Pardalos
e-mail: pardalos@ufl.edu

A. Chinchuluun
e-mail: altannar@ufl.edu

123



490 J Glob Optim (2008) 40:489–494

This problem, for specific f (defined by interpolation problems), goes back to Chebyshev,
who contributed by it to the foundations of best approximation theory.

For more general f , appropriate determination of B in (1) is given by Du and Hwang
[1,5, pp. 339–367], as follows:

Theorem 1 (Du–Hwang) Suppose that fi , i = 1, . . . , m, are continuous and concave func-
tions on the compact polyhedron

X = {x ∈ R
n : xT a j ≤ b j , j = 1, . . . , k}.

Then the minimum value of the function

g(x) = max
i=1,...,m

fi (x)

over X is achieved at a g-vertex, i.e., at a point x∗ with the property that there is no y ∈ X
such that at least one of the sets M(x∗) and J (x∗) is a proper subset of M(y) and J (y)

respectively, where

J (x) :=
{

j ∈ {1, . . . , k} : xT a j = b j

}
,

and

M(x) := {i ∈ {1, . . . , m} : g(x) = fi (x)}.
With the above theorem, Du and Hwang [1,2] proved the Gilbert–Pollak conjecture (1966)

that the Steiner ratio in the Euclidean plane is
√

3/2 (see also [2,5]). Let G(V, E) be a net-
work with a set of edges E and a set of vertices V . Let M be a subset of V . Let us recall
some important notions.

• Steiner minimum tree (SMT) on the finite point set M—the shortest network (tree) inter-
connecting the points in this set. It may contain vertices not in M .

• Minimum spanning tree (MST) on M—a shortest spanning tree with vertex set M .

• Gilbert–Pollak conjecture: inf
M⊂R2

Ls (M)
Lm (M)

= √
3/2,

where Ls(M) and Lm(M) are the lengths of SMT (M) and M ST (M) respectively.

An interior point x of X is a g-vertex iff M(x) is maximal. In general, for any g-vertex,
there exists an extreme subset Y of X such that M(x) is maximal over Y . A point x of X is
called a critical point, if there exists an extreme set Y such that M(x) is maximal over Y .
Thus, every g-vertex is a critical point. However, the inverse is not true.

Du and Pardalos [4] generalized the above theorem for the case when the index set is
infinite—a compact set, as follows.

Theorem 2 (Du, Pardalos) Let f : X × I → R be a continuous function, where X is a com-
pact polyhedron in R

m and I is a compact set in R
n. Let g(x) = maxy∈Y f (x, y). If f (x, y)

is a concave function with respect to x, then the minimum value of g over X is achieved at
some critical point.

In this paper we strengthen the results of Du–Pardalos and Du–Hwang, showing that the
minimum point in (1) is achieved at a generalized vertex (not only at a critical point), when Y
is compact, and X is a compact polyhedron. We give a random version of this strengthening.

123



J Glob Optim (2008) 40:489–494 491

2 Compact polyhedrons

Here we give necessary and sufficient conditions for compactness of a polyhedron

P = {x ∈ R
n : xT a j ≤ b j , j = 1, . . . , k}.

Compact polyhedrons are used in the next theorems, so such a characterization is useful.

Proposition 3 The polyhedron P is compact if and only if

0 belongs to the interior of co{a j }k
j=1. (3)

Proof Note first that (3) implies that k ≥ n + 1 (otherwise co{a j }k
j=1 will have no interior

points) and that the span of {a j }k
j=1 is all R

n . Without loss of generality, we may assume

that b j ≥ 0 (replacing P with P − p0 and b j with b j − pT
0 a j if necessary, where p0 is any

element of P).

(a) Assume that (3) is satisfied and P is unbounded. Then there is a sequence xi ∈ P such
that ‖xi‖ → ∞. By compactness of the unit sphere, there is a subsequence {xir } ⊂ {xi }
such that xir‖xir ‖ converges to some x0 with ‖x0‖ = 1. Since P is closed, x0 ∈ P and

xT
0 a j ≤ 0, j = 1, . . . , k. (4)

By (3) and Carathéodory’s theorem there are positive αr , r = 1, . . . , n + 1, and indices
j1, . . . , jn+1 such that the span of {a jr }n+1

r=1 is R
n and

n+1∑
r=1

αr a jr = 0. (5)

There is an index r0 such that xT
0 a jr < 0; otherwise x0 should be orthogonal to all

a jr , r = 1, . . . , n + 1, which is a contradiction with the fact that the span of {a jr }n+1
r=1 is

all R
n .

Multiplying (4) with α jr , r = 1, . . . , n + 1, and summing, we obtain a contradiction.
(b) Assume that P is compact and (3) is not satisfied. By separation theorem, we can separate

0 and co{a j }k
j=1, so there is a 0 
= y ∈ R

n such that

yT a j ≤ 0 ≤ b j , j = 1, . . . , k.

So, the ray {βy : β > 0} will belong to P , a contradiction with the compactness of P .

��

3 Localization of minimax points

Define

J (x) :=
{

j ∈ {1, . . . , k} : xT a j = b j

}

and

M(x) := {y ∈ Y : g(x) = f (x, y)}.
The point x̂ will be called a generalized vertex (in short g-vertex) if there is no z ∈ X such

that the set J (x̂) ∪ M(x̂) is a proper subset of J (z) ∪ M(z).
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Theorem 4 (General localization theorem) Suppose that Y is a compact topological space,
X ⊂ R

n is a compact polyhedron, f : X × Y → R is a continuous function and f (·, y) is
concave for every y ∈ Y . Define g(x) = maxy∈Y f (x, y). Then the minimum of g over X is
attained at some generalized vertex x̂ .

Proof Let x∗ be a minimum point for g. We will prove, applying the Zorn lemma, that there
exists a g-vertex x̂ satisfying M(x∗) ⊂ M(x̂) and J (x∗) ⊂ J (x̂). Let us consider the partial
ordering � on the set

S = {x ∈ X : M(x∗) ⊆ M(x), J (x∗) ⊆ J (x)}
defined by

x � y ⇔ (M(x) ∪ J (x)) ⊆ (M(y) ∪ J (y)) .

Let {xi }∞i=1 be a linearly ordered subset of (S,�), i.e.,

M(x∗) ⊆ M(x1) ⊆ M(x2) ⊆ · · · ⊆ M(xn) . . .

J (x∗) ⊆ J (x1) ⊆ J (x2) ⊆ · · · ⊆ J (xn) . . .

Since X is compact, there exists a subsequence {xik } converging to some x ′. Since Y is
compact, the function x �→ max f (x, Y ) is continuous. So, if y ∈ M(xn) for some n, then
y ∈ M(xki ) for sufficiently large i , therefore

max f (x ′, Y ) = lim
k→∞ max f (xik , Y ) = lim f (xki , y) = f (x ′, y),

which means y ∈ M(x ′) or M(xn) ⊆ M(x ′) for every n. Similarly we can prove that
J (xn) ⊆ J (x ′) for every n. Thus, x ′ is an upper bound for {xn}∞n=1 with respect to �. By the
Zorn lemma, (S,�) has a maximal element x̂ , i.e., x̂ is a g-vertex.

In particular, M(x∗) ⊆ M(x̂) and J (x∗) ⊆ J (x̂). The latter inclusion implies that x̂ T a j =
b j ,∀ j ∈ J (x∗). There is λ0 > 0 such that

x(λ) := x∗ + λ(x∗ − x̂) ∈ P for every λ ∈ (0, λ0).

We will prove that x̂ is a minimum point of g. Assume the contrary. Consider the cases:

Case 1 There exists λ ∈ (0, λ0) such that M(x(λ)) ∩ M(x∗) 
= ∅.
Take y ∈ M(x(λ)) ∩ M(x∗). Then

x∗ = λ

1 + λ
x̂ + 1

1 + λ
x(λ).

By concavity of f (., y) we have

f (x∗, y) ≥ λ

1 + λ
f (x̂, y) + 1

1 + λ
f (x(λ), y) > f (x∗, y),

a contradiction.

Case 2 M(x(λ)) ∩ M(x∗) = ∅ for every λ ∈ (0, λ0).
Let y(λ) ∈ M(x(λ)). By compactness, there exists a sequence {λk} converging to zero

such that y(λk) converges to some y∗ ∈ Y . Since g(x(λk)) = f (x(λk), y(λ)), by continu-
ity we obtain g(x∗) = f (x∗, y∗), so y∗ ∈ M(x∗). Since M(x∗) ⊆ M(x̂), it follows that
f (x̂, y∗) = g(x̂) > g(x∗). Therefore, for sufficiently large k,

f (x̂, y(λk)) > g(x∗).
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Since y(λk) ∈ M(x(λk)) and y(λk) 
∈ M(x∗), we have

f (x(λk), y(λk)) = g(x(λk)) ≥ g(x∗),

and

f (x∗, y(λk)) < g(x∗).

Thus

f (x∗, y(λk)) < min{ f (x(λk), y(λk)), f (x̂, y(λk))},
which is a contradiction with the concavity of f (x∗, .). ��
Remark The above theorem generalizes a theorem of Du and Pardalos [4]. Namely, they
prove that the minimum of g is attained at a critical point x̂ characterized by the following:

(*) There exists an extreme subset Z of X such that x̂ ∈ Z and the set M(x̂) = {y ∈ Y :
g(x̂) = f (x̂, y)} is maximal over Z .

It is easy to see that every g-vertex is a critical point, but the inverse is not true (see for
instance, [5], Remark 2).

4 Random g-vertices

In this section (�,�) is a measure space, i.e., � is a set and � is a σ algebra on �. A
(multi)function F : � → R

n is measurable iff F−1(B) is measurable for each closed subset
B of R

n (i.e., F−1(B) := {ω ∈ � : F(ω) ∩ B 
= ∅} ∈ �). For a comprehensive description
of measurable relations, see for instance [6].

Theorem 5 (Random g-vertices) Suppose that X in Theorem 1 is a compact random
polyhedron, i.e., it depends on ω and is given by

X (ω) = {x ∈ E : xT a j (ω) ≤ b j (ω) j = 1, . . . , k},
where a j : � → R

n and b j : � → R are measurable functions. Then there exists a measurable
function ω �→ x̂(ω) with x̂(ω) being a generalized vertex of X (ω) for every ω ∈ �.

Proof First we prove that there is a measurable minimizer x∗(ω) of the minimization problem

minimize max f (ω, x, Y ) (6)

subject to x ∈ X (ω) (7)

The proof of this fact is routine and is based on known measurability theorems, contained,
for instance, in [6].

Next, following the proof of Theorem 4, we prove that there is a g-vertex x̂(ω), which is
a measurable function on ω.

Let us consider the partial ordering � on the set of all measurable selections of the
multifunction X (ω) i.e.,

S = {x : � → X (ω) : M(x∗(ω)) ⊆ M(x(ω)), J (x∗(ω)) ⊆ J (x(ω)), ∀ω ∈ �}
defined by

x � y ⇔ (M(x(ω)) ∪ J (x(ω))) ⊆ (M(y(ω)) ∪ J (y(ω))) ∀ω ∈ �.
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Let {xi }∞i=1 be a linearly ordered subset of (S,�), i.e.,

M(x∗(ω)) ⊆ M(x1(ω)) ⊆ M(x2(ω)) ⊆ · · · ⊆ M(xn(ω)) . . . ∀ω ∈ �,

J (x∗(ω)) ⊆ J (x1(ω)) ⊆ J (x2(ω)) ⊆ · · · ⊆ J (xn(ω)) . . . ∀ω ∈ �.

Consider the set

Xn(ω) =
{

x ∈ X (ω) :
(

x + 1

n
B

)
∩ {xk(ω)}∞k=n 
= ∅

}
.

Since

Xn(ω) =
∞⋃

k=n

(
xk(ω) + 1

n
B

)
,

we have

X (ω) \ Xn(ω) =
∞⋂

k=n

(
X (ω)

∖ (
xk(ω) + 1

n
B

))
. (8)

Thus, by Theorem 4.1 of [6], the multifunction ω �→ X (ω)\Xn(ω) is measurable, and by
Theorem 4.5 of [6], the function ω �→ Xn(ω) is measurable. Putting C(ω) = ⋂∞

n=1 Xn(ω)

and applying again Theorem 4.5 of [6], we obtain that the multifunction ω �→ C(ω) is mea-
surable. Now by the Kuratowski, Ryll–Nardzewski selection theorem (see [6], Theorem 5.1),
there is a measurable selection x ′(ω) ∈ C(ω),∀ω ∈ �. Since C(ω) is the set of all cluster
points of the sequence {xn(ω)}∞n=1, the point x ′(ω) is a cluster point too, depending in a
measurable way on ω. As in the proof of Theorem 4, we obtain that x ′(ω) is an upper bound
for {xn(ω)}∞n=1 with respect to �. By the Zorn lemma, (S,�) has a maximal element x̂(ω)

(measurable on ω), i.e., x̂(ω) is a measurable g-vertex.
Further we prove exactly as in Theorem 4 that x̂(ω) is a minimum point of the function

max f (ω, ·, Y ) over X (ω), which completes the proof of the theorem. ��
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