Localization of minimax points

Pando G. Georgiev • Panos M. Pardalos • Altannar Chinchuluun

Received: 22 September 2007 / Accepted: 28 September 2007 / Published online: 20 November 2007
© Springer Science+Business Media, LLC. 2007

Abstract

In their proof of Gilbert-Pollak conjecture on Steiner ratio, Du and Hwang (Proceedings 31th FOCS, pp. 76-85 (1990); Algorithmica 7:121-135, 1992) used a result about localization of the minimum points of functions of the type $\max _{y \in Y} f(\cdot, y)$. In this paper, we present a generalization of such a localization in terms of generalized vertices, when we minimize over a compact polyhedron, and Y is a compact set. This is also a strengthening of a result of Du and Pardalos (J. Global Optim. 5:127-129, 1994). We give also a random version of our generalization.

Keywords Minimax • Gilbert-Pollak conjecture • Steiner ratio • g-Vertex • Steiner tree • Spanning tree

1 Introduction

We consider a classical minimax problem

$$
\begin{equation*}
\min _{x \in X} \max _{y \in Y} f(x, y), \tag{1}
\end{equation*}
$$

where X is an appropriate set and Y is a compact set. We are interested in determination of a subset $B \subset X$ (usually finite) such that

$$
\begin{equation*}
\min _{x \in B} \max _{y \in Y} f(x, y)=\min _{x \in X} \max _{y \in Y} f(x, y) . \tag{2}
\end{equation*}
$$

[^0]This problem, for specific f (defined by interpolation problems), goes back to Chebyshev, who contributed by it to the foundations of best approximation theory.

For more general f, appropriate determination of B in (1) is given by Du and Hwang [1,5, pp. 339-367], as follows:

Theorem 1 (Du-Hwang) Suppose that $f_{i}, i=1, \ldots, m$, are continuous and concave functions on the compact polyhedron

$$
X=\left\{x \in \mathbb{R}^{n}: x^{T} a_{j} \leq b_{j}, j=1, \ldots, k\right\} .
$$

Then the minimum value of the function

$$
g(x)=\max _{i=1, \ldots, m} f_{i}(x)
$$

over X is achieved at a g-vertex, i.e., at a point x^{*} with the property that there is no $y \in X$ such that at least one of the sets $M\left(x^{*}\right)$ and $J\left(x^{*}\right)$ is a proper subset of $M(y)$ and $J(y)$ respectively, where

$$
J(x):=\left\{j \in\{1, \ldots, k\}: x^{T} a_{j}=b_{j}\right\},
$$

and

$$
M(x):=\left\{i \in\{1, \ldots, m\}: g(x)=f_{i}(x)\right\} .
$$

With the above theorem, Du and Hwang [1,2] proved the Gilbert-Pollak conjecture (1966) that the Steiner ratio in the Euclidean plane is $\sqrt{3} / 2$ (see also [2,5]). Let $G(V, E)$ be a network with a set of edges E and a set of vertices V. Let M be a subset of V. Let us recall some important notions.

- Steiner minimum tree (SMT) on the finite point set M-the shortest network (tree) interconnecting the points in this set. It may contain vertices not in M.
- Minimum spanning tree (MST) on M-a shortest spanning tree with vertex set M.
- Gilbert-Pollak conjecture: $\inf _{M \subset \mathbb{R}^{2}} \frac{L_{s}(M)}{L_{m}(M)}=\sqrt{3} / 2$,
where $L_{s}(M)$ and $L_{m}(M)$ are the lengths of $S M T(M)$ and $M S T(M)$ respectively.

An interior point x of X is a g-vertex iff $M(x)$ is maximal. In general, for any g-vertex, there exists an extreme subset Y of X such that $M(x)$ is maximal over Y. A point x of X is called a critical point, if there exists an extreme set Y such that $M(x)$ is maximal over Y. Thus, every g-vertex is a critical point. However, the inverse is not true.

Du and Pardalos [4] generalized the above theorem for the case when the index set is infinite-a compact set, as follows.

Theorem 2 (Du, Pardalos) Let $f: X \times I \rightarrow \mathbb{R}$ be a continuous function, where X is a compact polyhedron in \mathbb{R}^{m} and I is a compact set in \mathbb{R}^{n}. Let $g(x)=\max _{y \in Y} f(x, y)$. If $f(x, y)$ is a concave function with respect to x, then the minimum value of g over X is achieved at some critical point.

In this paper we strengthen the results of Du-Pardalos and Du-Hwang, showing that the minimum point in (1) is achieved at a generalized vertex (not only at a critical point), when Y is compact, and X is a compact polyhedron. We give a random version of this strengthening.

2 Compact polyhedrons

Here we give necessary and sufficient conditions for compactness of a polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}: x^{T} a_{j} \leq b_{j}, j=1, \ldots, k\right\} .
$$

Compact polyhedrons are used in the next theorems, so such a characterization is useful.
Proposition 3 The polyhedron P is compact if and only if

$$
\begin{equation*}
0 \text { belongs to the interior of } \operatorname{co}\left\{a_{j}\right\}_{j=1}^{k} \text {. } \tag{3}
\end{equation*}
$$

Proof Note first that (3) implies that $k \geq n+1$ (otherwise $\operatorname{co}\left\{a_{j}\right\}_{j=1}^{k}$ will have no interior points) and that the span of $\left\{a_{j}\right\}_{j=1}^{k}$ is all \mathbb{R}^{n}. Without loss of generality, we may assume that $b_{j} \geq 0$ (replacing P with $P-p_{0}$ and b_{j} with $b_{j}-p_{0}^{T} a_{j}$ if necessary, where p_{0} is any element of P).
(a) Assume that (3) is satisfied and P is unbounded. Then there is a sequence $x_{i} \in P$ such that $\left\|x_{i}\right\| \rightarrow \infty$. By compactness of the unit sphere, there is a subsequence $\left\{x_{i_{r}}\right\} \subset\left\{x_{i}\right\}$ such that $\frac{x_{i r}}{\left\|x_{i r}\right\|}$ converges to some x_{0} with $\left\|x_{0}\right\|=1$. Since P is closed, $x_{0} \in P$ and

$$
\begin{equation*}
x_{0}^{T} a_{j} \leq 0, \quad j=1, \ldots, k \tag{4}
\end{equation*}
$$

By (3) and Carathéodory's theorem there are positive $\alpha_{r}, r=1, \ldots, n+1$, and indices j_{1}, \ldots, j_{n+1} such that the span of $\left\{a_{j_{r}}\right\}_{r=1}^{n+1}$ is \mathbb{R}^{n} and

$$
\begin{equation*}
\sum_{r=1}^{n+1} \alpha_{r} a_{j_{r}}=0 \tag{5}
\end{equation*}
$$

There is an index r_{0} such that $x_{0}^{T} a_{j_{r}}<0$; otherwise x_{0} should be orthogonal to all $a_{j_{r}}, r=1, \ldots, n+1$, which is a contradiction with the fact that the span of $\left\{a_{j_{r}}\right\}_{r=1}^{n+1}$ is all \mathbb{R}^{n}.
Multiplying (4) with $\alpha_{j_{r}}, r=1, \ldots, n+1$, and summing, we obtain a contradiction.
(b) Assume that P is compact and (3) is not satisfied. By separation theorem, we can separate 0 and $\operatorname{co}\left\{a_{j}\right\}_{j=1}^{k}$, so there is a $0 \neq y \in \mathbb{R}^{n}$ such that

$$
y^{T} a_{j} \leq 0 \leq b_{j}, \quad j=1, \ldots, k .
$$

So, the ray $\{\beta y: \beta>0\}$ will belong to P, a contradiction with the compactness of P.

3 Localization of minimax points

Define

$$
J(x):=\left\{j \in\{1, \ldots, k\}: x^{T} a_{j}=b_{j}\right\}
$$

and

$$
M(x):=\{y \in Y: g(x)=f(x, y)\} .
$$

The point \hat{x} will be called a generalized vertex (in short g-vertex) if there is no $z \in X$ such that the set $J(\hat{x}) \cup M(\hat{x})$ is a proper subset of $J(z) \cup M(z)$.

Theorem 4 (General localization theorem) Suppose that Y is a compact topological space, $X \subset \mathbb{R}^{n}$ is a compact polyhedron, $f: X \times Y \rightarrow \mathbb{R}$ is a continuous function and $f(\cdot, y)$ is concave for every $y \in Y$. Define $g(x)=\max _{y \in Y} f(x, y)$. Then the minimum of g over X is attained at some generalized vertex \hat{x}.

Proof Let x^{*} be a minimum point for g. We will prove, applying the Zorn lemma, that there exists a g-vertex \hat{x} satisfying $M\left(x^{*}\right) \subset M(\hat{x})$ and $J\left(x^{*}\right) \subset J(\hat{x})$. Let us consider the partial ordering \leq on the set

$$
S=\left\{x \in X: M\left(x^{*}\right) \subseteq M(x), J\left(x^{*}\right) \subseteq J(x)\right\}
$$

defined by

$$
x \leq y \Leftrightarrow(M(x) \cup J(x)) \subseteq(M(y) \cup J(y)) .
$$

Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a linearly ordered subset of (S, \preceq), i.e.,

$$
\begin{aligned}
& M\left(x^{*}\right) \subseteq M\left(x_{1}\right) \subseteq M\left(x_{2}\right) \subseteq \cdots \subseteq M\left(x_{n}\right) \ldots \\
& J\left(x^{*}\right) \subseteq J\left(x_{1}\right) \subseteq J\left(x_{2}\right) \subseteq \cdots \subseteq J\left(x_{n}\right) \ldots
\end{aligned}
$$

Since X is compact, there exists a subsequence $\left\{x_{i_{k}}\right\}$ converging to some x^{\prime}. Since Y is compact, the function $x \mapsto \max f(x, Y)$ is continuous. So, if $y \in M\left(x_{n}\right)$ for some n, then $y \in M\left(x_{k_{i}}\right)$ for sufficiently large i, therefore

$$
\max f\left(x^{\prime}, Y\right)=\lim _{k \rightarrow \infty} \max f\left(x_{i_{k}}, Y\right)=\lim f\left(x_{k_{i}}, y\right)=f\left(x^{\prime}, y\right),
$$

which means $y \in M\left(x^{\prime}\right)$ or $M\left(x_{n}\right) \subseteq M\left(x^{\prime}\right)$ for every n. Similarly we can prove that $J\left(x_{n}\right) \subseteq J\left(x^{\prime}\right)$ for every n. Thus, x^{\prime} is an upper bound for $\left\{x_{n}\right\}_{n=1}^{\infty}$ with respect to \preceq. By the Zorn lemma, (S, \preceq) has a maximal element \hat{x}, i.e., \hat{x} is a g-vertex.

In particular, $M\left(x^{*}\right) \subseteq M(\hat{x})$ and $J\left(x^{*}\right) \subseteq J(\hat{x})$. The latter inclusion implies that $\hat{x}^{T} a_{j}=$ $b_{j}, \forall j \in J\left(x^{*}\right)$. There is $\lambda_{0}>0$ such that

$$
x(\lambda):=x^{*}+\lambda\left(x^{*}-\hat{x}\right) \in P \text { for every } \lambda \in\left(0, \lambda_{0}\right) .
$$

We will prove that \hat{x} is a minimum point of g. Assume the contrary. Consider the cases:
Case 1 There exists $\lambda \in\left(0, \lambda_{0}\right)$ such that $M(x(\lambda)) \cap M\left(x^{*}\right) \neq \emptyset$.
Take $y \in M(x(\lambda)) \cap M\left(x^{*}\right)$. Then

$$
x^{*}=\frac{\lambda}{1+\lambda} \hat{x}+\frac{1}{1+\lambda} x(\lambda) .
$$

By concavity of $f(., y)$ we have

$$
f\left(x^{*}, y\right) \geq \frac{\lambda}{1+\lambda} f(\hat{x}, y)+\frac{1}{1+\lambda} f(x(\lambda), y)>f\left(x^{*}, y\right),
$$

a contradiction.
Case $2 M(x(\lambda)) \cap M\left(x^{*}\right)=\emptyset$ for every $\lambda \in\left(0, \lambda_{0}\right)$.
Let $y(\lambda) \in M(x(\lambda))$. By compactness, there exists a sequence $\left\{\lambda_{k}\right\}$ converging to zero such that $y\left(\lambda_{k}\right)$ converges to some $y^{*} \in Y$. Since $g\left(x\left(\lambda_{k}\right)\right)=f\left(x\left(\lambda_{k}\right), y(\lambda)\right)$, by continuity we obtain $g\left(x^{*}\right)=f\left(x^{*}, y^{*}\right)$, so $y^{*} \in M\left(x^{*}\right)$. Since $M\left(x^{*}\right) \subseteq M(\hat{x})$, it follows that $f\left(\hat{x}, y^{*}\right)=g(\hat{x})>g\left(x^{*}\right)$. Therefore, for sufficiently large k,

$$
f\left(\hat{x}, y\left(\lambda_{k}\right)\right)>g\left(x^{*}\right) .
$$

Since $y\left(\lambda_{k}\right) \in M\left(x\left(\lambda_{k}\right)\right)$ and $y\left(\lambda_{k}\right) \notin M\left(x^{*}\right)$, we have

$$
f\left(x\left(\lambda_{k}\right), y\left(\lambda_{k}\right)\right)=g\left(x\left(\lambda_{k}\right)\right) \geq g\left(x^{*}\right),
$$

and

$$
f\left(x^{*}, y\left(\lambda_{k}\right)\right)<g\left(x^{*}\right) .
$$

Thus

$$
f\left(x^{*}, y\left(\lambda_{k}\right)\right)<\min \left\{f\left(x\left(\lambda_{k}\right), y\left(\lambda_{k}\right)\right), f\left(\hat{x}, y\left(\lambda_{k}\right)\right)\right\},
$$

which is a contradiction with the concavity of $f\left(x^{*},.\right)$.
Remark The above theorem generalizes a theorem of Du and Pardalos [4]. Namely, they prove that the minimum of g is attained at a critical point \hat{x} characterized by the following:
${ }^{(*)}$ There exists an extreme subset Z of X such that $\hat{x} \in Z$ and the set $M(\hat{x})=\{y \in Y$: $g(\hat{x})=f(\hat{x}, y)\}$ is maximal over Z.

It is easy to see that every g-vertex is a critical point, but the inverse is not true (see for instance, [5], Remark 2).

4 Random g-vertices

In this section (Ω, Σ) is a measure space, i.e., Ω is a set and Σ is a σ algebra on Ω. A (multi)function $F: \Omega \rightarrow \mathbb{R}^{n}$ is measurable iff $F^{-1}(B)$ is measurable for each closed subset B of \mathbb{R}^{n} (i.e., $F^{-1}(B):=\{\omega \in \Omega: F(\omega) \cap B \neq \emptyset\} \in \Sigma$). For a comprehensive description of measurable relations, see for instance [6].

Theorem 5 (Random g-vertices) Suppose that X in Theorem 1 is a compact random polyhedron, i.e., it depends on ω and is given by

$$
X(\omega)=\left\{x \in E: x^{T} a_{j}(\omega) \leq b_{j}(\omega) \quad j=1, \ldots, k\right\},
$$

where $a_{j}: \Omega \rightarrow \mathbb{R}^{n}$ and $b_{j}: \Omega \rightarrow \mathbb{R}$ are measurable functions. Then there exists a measurable function $\omega \mapsto \hat{x}(\omega)$ with $\hat{x}(\omega)$ being a generalized vertex of $X(\omega)$ for every $\omega \in \Omega$.

Proof First we prove that there is a measurable minimizer $x^{*}(\omega)$ of the minimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \max f(\omega, x, Y) \\
\text { subject to } & x \in X(\omega) \tag{7}
\end{array}
$$

The proof of this fact is routine and is based on known measurability theorems, contained, for instance, in [6].

Next, following the proof of Theorem 4, we prove that there is a g-vertex $\hat{x}(\omega)$, which is a measurable function on ω.

Let us consider the partial ordering \preceq on the set of all measurable selections of the multifunction $X(\omega)$ i.e.,

$$
S=\left\{x: \Omega \rightarrow X(\omega): M\left(x^{*}(\omega)\right) \subseteq M(x(\omega)), J\left(x^{*}(\omega)\right) \subseteq J(x(\omega)), \quad \forall \omega \in \Omega\right\}
$$

defined by

$$
x \leq y \Leftrightarrow(M(x(\omega)) \cup J(x(\omega))) \subseteq(M(y(\omega)) \cup J(y(\omega))) \quad \forall \omega \in \Omega .
$$

Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a linearly ordered subset of (S, \preceq), i.e.,

$$
\begin{gathered}
M\left(x^{*}(\omega)\right) \subseteq M\left(x_{1}(\omega)\right) \subseteq M\left(x_{2}(\omega)\right) \subseteq \cdots \subseteq M\left(x_{n}(\omega)\right) \ldots \quad \forall \omega \in \Omega, \\
J\left(x^{*}(\omega)\right) \subseteq J\left(x_{1}(\omega)\right) \subseteq J\left(x_{2}(\omega)\right) \subseteq \cdots \subseteq J\left(x_{n}(\omega)\right) \ldots \quad \forall \omega \in \Omega .
\end{gathered}
$$

Consider the set

$$
X_{n}(\omega)=\left\{x \in X(\omega):\left(x+\frac{1}{n} B\right) \cap\left\{x_{k}(\omega)\right\}_{k=n}^{\infty} \neq \emptyset\right\} .
$$

Since

$$
X_{n}(\omega)=\bigcup_{k=n}^{\infty}\left(x_{k}(\omega)+\frac{1}{n} B\right)
$$

we have

$$
\begin{equation*}
X(\omega) \backslash X_{n}(\omega)=\bigcap_{k=n}^{\infty}\left(X(\omega) \backslash\left(x_{k}(\omega)+\frac{1}{n} B\right)\right) . \tag{8}
\end{equation*}
$$

Thus, by Theorem 4.1 of [6], the multifunction $\omega \mapsto X(\omega) \backslash X_{n}(\omega)$ is measurable, and by Theorem 4.5 of [6], the function $\omega \mapsto X_{n}(\omega)$ is measurable. Putting $C(\omega)=\bigcap_{n=1}^{\infty} \overline{X_{n}(\omega)}$ and applying again Theorem 4.5 of [6], we obtain that the multifunction $\omega \mapsto C(\omega)$ is measurable. Now by the Kuratowski, Ryll-Nardzewski selection theorem (see [6], Theorem 5.1), there is a measurable selection $x^{\prime}(\omega) \in C(\omega), \forall \omega \in \Omega$. Since $C(\omega)$ is the set of all cluster points of the sequence $\left\{x_{n}(\omega)\right\}_{n=1}^{\infty}$, the point $x^{\prime}(\omega)$ is a cluster point too, depending in a measurable way on ω. As in the proof of Theorem 4, we obtain that $x^{\prime}(\omega)$ is an upper bound for $\left\{x_{n}(\omega)\right\}_{n=1}^{\infty}$ with respect to \preceq. By the Zorn lemma, (S, \preceq) has a maximal element $\hat{x}(\omega)$ (measurable on ω), i.e., $\hat{x}(\omega)$ is a measurable g-vertex.

Further we prove exactly as in Theorem 4 that $\hat{x}(\omega)$ is a minimum point of the function $\max f(\omega, \cdot, Y)$ over $X(\omega)$, which completes the proof of the theorem.

References

1. Du, D.Z., Hwang, F.K.: An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ration. Proceedings 31th FOCS, pp. 76-85 (1990)
2. Du, D.Z., Hwang, F.K.: A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica 7, 121-135 (1992)
3. Du, D.Z., Pardalos, P.M., Wu, W.: Mathematical Theory of Optimization. Kluwer Academic Publishers (2001)
4. Du, D.Z., Pardalos, P.M.: A continuous version of a result of Du and Hwang. J. Global Optim. 5, 127-129 (1994)
5. Du, D.Z.: Minimax and its applications. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization. Kluwer (1995)
6. Himmelberg, C.J.: Measurable relations. Fund. Math. 87, 53-72 (1975)

[^0]: P. G. Georgiev (\triangle)

 Computer Science Department, University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH 45221, USA
 e-mail: pgeorgie@ececs.uc.edu
 P. M. Pardalos • A. Chinchuluun

 Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, Gainesville, FL 32611, USA
 P. M. Pardalos
 e-mail: pardalos@ufl.edu
 A. Chinchuluun
 e-mail: altannar@ufl.edu

