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Abstract In their proof of Gilbert—Pollak conjecture on Steiner ratio, Du and Hwang
(Proceedings 31th FOCS, pp. 76-85 (1990); Algorithmica 7:121-135, 1992) used a result
about localization of the minimum points of functions of the type maxycy f (-, y). In this
paper, we present a generalization of such a localization in terms of generalized vertices, when
we minimize over a compact polyhedron, and Y is a compact set. This is also a strengthening
of a result of Du and Pardalos (J. Global Optim. 5:127-129, 1994). We give also a random
version of our generalization.
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1 Introduction

We consider a classical minimax problem

min ma ,y), 1
mip max f (x, y) M)

where X is an appropriate set and Y is a compact set. We are interested in determination of
a subset B C X (usually finite) such that

. ) = mi . 5
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This problem, for specific f (defined by interpolation problems), goes back to Chebysheyv,
who contributed by it to the foundations of best approximation theory.

For more general f, appropriate determination of B in (1) is given by Du and Hwang
[1,5, pp. 339-367], as follows:

Theorem 1 (Du-Hwang) Suppose that f;,i =1, ..., m, are continuous and concave func-
tions on the compact polyhedron

X={xeR":xTa; <bj,j=1,... k).
Then the minimum value of the function

gx) = max fi(x)

.....

over X is achieved at a g-vertex, i.e., at a point x* with the property that there isno 'y € X
such that at least one of the sets M (x*) and J(x*) is a proper subset of M (y) and J(y)
respectively, where

J(x) = [j e{l.....k}:x"a; :b,},
and
Mx):={ie{l,...,m}:g(x)= fi(x)}.

With the above theorem, Du and Hwang [1,2] proved the Gilbert—Pollak conjecture (1966)
that the Steiner ratio in the Euclidean plane is V3 /2 (see also [2,5]). Let G(V, E) be a net-
work with a set of edges E and a set of vertices V. Let M be a subset of V. Let us recall
some important notions.

e Steiner minimum tree (SMT) on the finite point set M—the shortest network (tree) inter-
connecting the points in this set. It may contain vertices not in M.

e Minimum spanning tree (MST) on M—a shortest spanning tree with vertex set M.
e Gilbert—Pollak conjecture: inf LM — /3 /2,
MCR?

where Ly(M) and L,,(M) are the lengths of SMT (M) and M ST (M) respectively.

An interior point x of X is a g-vertex iff M (x) is maximal. In general, for any g-vertex,
there exists an extreme subset Y of X such that M (x) is maximal over Y. A point x of X is
called a critical point, if there exists an extreme set Y such that M (x) is maximal over Y.
Thus, every g-vertex is a critical point. However, the inverse is not true.

Du and Pardalos [4] generalized the above theorem for the case when the index set is
infinite—a compact set, as follows.

Theorem 2 (Du, Pardalos) Let f: X x I — R be a continuous function, where X is a com-
pact polyhedron in R™ and I is a compact set in R". Let g(x) = maxyey f(x, ). If f(x,y)
is a concave function with respect to x, then the minimum value of g over X is achieved at
some critical point.

In this paper we strengthen the results of Du—Pardalos and Du-Hwang, showing that the
minimum point in (1) is achieved at a generalized vertex (not only at a critical point), when Y
is compact, and X is a compact polyhedron. We give a random version of this strengthening.
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2 Compact polyhedrons

Here we give necessary and sufficient conditions for compactness of a polyhedron
P={xeR" :xTa; <bj,j=1,...,k.
Compact polyhedrons are used in the next theorems, so such a characterization is useful.
Proposition 3 The polyhedron P is compact if and only if
0 belongs to the interior of co{aj}lj‘-:]. 3)
Proof Note first that (3) implies that k > n + 1 (otherwise co{a j}’J‘.:1 will have no interior

points) and that the span of {a; }]]‘.:1 is all R”. Without loss of generality, we may assume

that b; > O (replacing P with P — pg and b; with b; — pg aj if necessary, where py is any
element of P).

(a) Assume that (3) is satisfied and P is unbounded. Then there is a sequence x; € P such
that ||x; | — oo. By compactness of the unit sphere, there is a subsequence {x;,} C {x;}
such that % converges to some xo with [|xp]| = 1. Since P is closed, xg € P and

xga; <0, j=1,...,k “)

By (3) and Carathéodory’s theorem there are positive o, r = 1, ..., n + 1, and indices
J1s -+, jnt1 such that the span of {ajr};’ill is R" and

n+1

Z“rajr =0. ©)
r=1

There is an index ro such that xOT aj, < 0; otherwise xo should be orthogonal to all

aj,r =1,...,n+ 1, which is a contradiction with the fact that the span of {a;, };’l’} is

all R".
Multiplying (4) with aj,, 7 = 1, ..., n + 1, and summing, we obtain a contradiction.
(b) Assume that P is compact and (3) is not satisfied. By separation theorem, we can separate
0 and cofa; }’J‘.zl, so there is a 0 # y € R”" such that
yTaj§0§b‘,-, jZl,...,k.
So, the ray {8y : B > 0} will belong to P, a contradiction with the compactness of P.

[m}

3 Localization of minimax points

Define
J(x) = {j e{l.....k}:xTa; =b,-}
and
Mx):={yeY:gx)= f(x, »}

The point X will be called a generalized vertex (in short g-vertex) if there is no z € X such
that the set J(X) U M (%) is a proper subset of J(z) U M (z).
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Theorem 4 (General localization theorem) Suppose that Y is a compact topological space,
X C R"™ is a compact polyhedron, f: X x Y — R is a continuous function and f (-, y) is
concave for every y € Y. Define g(x) = maxyey f(x, y). Then the minimum of g over X is
attained at some generalized vertex X.

Proof Let x* be a minimum point for g. We will prove, applying the Zorn lemma, that there
exists a g-vertex x satisfying M (x*) € M(x) and J (x*) C J(x). Let us consider the partial
ordering < on the set

S={xeX: Mx" CMkx),J(x" CJkx)}
defined by
XXy Mx)UJX) S My)UJy).
Let {xi}l‘.’i1 be a linearly ordered subset of (S, <), i.e.,
ME®) S M(x) S M) S+ S M(xn) ...
JEH) S Jx) S J) S ST (@) ..

Since X is compact, there exists a subsequence {x;, } converging to some x’. Since Y is
compact, the function x +— max f(x, Y) is continuous. So, if y € M (x,) for some n, then
y € M (xy,;) for sufficiently large i, therefore

max f(x',Y) = klirn max f(x;,,Y) =lm f(x,y) = f(x, ),

which means y € M(x) or M(x,) € M(x') for every n. Similarly we can prove that
J(xn) € J(x') for every n. Thus, x’ is an upper bound for {x,}o2 | with respect to <. By the
Zorn lemma, (S, <) has a maximal element X, i.e., X is a g-vertex.

In particular, M (x*) € M (x) and J (x*) C J(X). The latter inclusion implies that;?Taj =

b;j,Vj e J(x*). There is Ay > 0 such that
x(A) :=x* +A(x* —X) € Pforevery A € (0, Ap).
We will prove that X is a minimum point of g. Assume the contrary. Consider the cases:

Case 1 There exists A € (0, Ag) such that M (x(1)) N M (x*) # @.
Take y € M(x(A)) N M(x™*). Then

x*—Lf—i— x()
I T4+2777
By concavity of f(., y) we have
A 1
* > _ - 2 - A *
J&xTy) = 1+Af(x’y)+ 1JF)Lf(X( ), ¥) > f(x7,y),

a contradiction.

Case2 M(x(A)) N M(x*) = @ for every A € (0, Ag).

Let y(A) € M(x(})). By compactness, there exists a sequence {A;} converging to zero
such that y(Ax) converges to some y* € Y. Since g(x(Ax)) = f(x(Ar), y(A)), by continu-
ity we obtain g(x*) = f(x*, y*), so y* € M(x*). Since M (x*) C M(x), it follows that
f (&, y*) = g(X) > g(x™). Therefore, for sufficiently large k,

F& y0) > gx™).
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Since y(Ar) € M(x(Ay)) and y(Ag) € M (x*), we have

FO), y(i)) = g(x (1)) = g(x™),

and
FOE yGa)) < g(x™).
Thus
FOF ) < mind f (x(Ae), y (i), f X,y
which is a contradiction with the concavity of f(x*,.). o

Remark The above theorem generalizes a theorem of Du and Pardalos [4]. Namely, they
prove that the minimum of g is attained at a critical point X characterized by the following:
(*) There exists an extreme subset Z of X such that X € Z and the set M(x) ={y € Y :
g(x) = f(x, y)}is maximal over Z.
It is easy to see that every g-vertex is a critical point, but the inverse is not true (see for
instance, [5], Remark 2).

4 Random g-vertices

In this section (€2, X) is a measure space, i.e., Q2 is a set and X is a o algebra on Q. A
(multi)function F :  — R” is measurable iff F~!(B) is measurable for each closed subset
Bof R" (e, F7'(B) :={w e Q: F(w)NB # ¥} € £).Fora comprehensive description
of measurable relations, see for instance [6].

Theorem 5 (Random g-vertices) Suppose that X in Theorem 1 is a compact random
polyhedron, i.e., it depends on w and is given by

X ={xeE:xTaj) <bj(®) j=1,...,k},

wherea;: Q — R" andbj: 2 — Raremeasurable functions. Then there exists a measurable
Sfunction @ + X(w) with X (w) being a generalized vertex of X (w) for every @ € Q.

Proof First we prove that there is a measurable minimizer x*(w) of the minimization problem
minimize max f(w, x,Y) (6)

subjectto  x € X () (7N

The proof of this fact is routine and is based on known measurability theorems, contained,
for instance, in [6].

Next, following the proof of Theorem 4, we prove that there is a g-vertex x (w), which is
a measurable function on w.

Let us consider the partial ordering < on the set of all measurable selections of the
multifunction X (w) i.e.,

S=x:2— X)) : M(x*(®) € M(x(w)), J(x*(w) C J(x(®), Yo Q}
defined by
XXy Mx(w)UJx@)) S My@)UJ(y)) Yocel.

@ Springer



494 J Glob Optim (2008) 40:489-494

Let {x;}{2, be a linearly ordered subset of (S, <), i.e.,

MEH (@) € M(x1(@) € Mx(@) S+ € M) ... YoeQ,

J(x (@) € J(x1(@) S J(x2(w) S -+ S J(n(®@) ... Yo e Q.

Consider the set
X, (w) = [x € X(w): (x + %B) N{xe(w)}ge, # @] .

Since

°° 1
Xp(@) = (xk(w) + ;B),

k=n

we have

~ 1
X\ %0 = (] (x@\ (@ +15)). ®)

k=n

Thus, by Theorem 4.1 of [6], the multifunction  +— X (w)\ X, (w) is measurable, and by
Theorem 4.5 of [6], the function w — X, (w) is measurable. Putting C(w) = ﬂ,‘jozl X, (w)
and applying again Theorem 4.5 of [6], we obtain that the multifunction w — C(w) is mea-
surable. Now by the Kuratowski, Ryll-Nardzewski selection theorem (see [6], Theorem 5.1),
there is a measurable selection x' (@) € C(w), Vo € . Since C(w) is the set of all cluster
points of the sequence {x,(w)}2,, the point x’(w) is a cluster point too, depending in a
measurable way on w. As in the proof of Theorem 4, we obtain that x’(w) is an upper bound
for {x,(w)}72; with respect to <. By the Zorn lemma, (S, <) has a maximal element % (w)
(measurable on w), i.e., X (w) is a measurable g-vertex.

Further we prove exactly as in Theorem 4 that X(w) is a minimum point of the function
max f(w, -, Y) over X (w), which completes the proof of the theorem. ]
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